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What is Tree Edit Distance (TED)?
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What is Tree Edit Distance (TED)?

• The minimum cost of transforming one tree into another 
by edit operations
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Tree Edit Distance (TED)

• If the cost of each edit operation is 1, …
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Tree Edit Distance (TED)

• If the cost of each edit operation is 1, …

TED 𝑋, 𝑌 = 3
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TED has a wide range of applications
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TED has a wide range of applications

• Natural language processing
- AI Generated Content

• Bioinformatics
- Protein structure and evolutionary

• Software Engineering
- Code similarity detection

• Machine Learning
- Classifications and clustering
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• The first TED algorithm (1979) with complexity O(n6)
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The Basic TED Algorithm

• The most widely-used TED algorithm (1989)
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The Basic TED Algorithm

• The most widely-used TED algorithm (1989)

• Dynamic programming (DP)
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The Basic TED Algorithm

• The most widely-used TED algorithm (1989)

• Dynamic programming (DP)

• The worst-case complexity: O(n4)
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The Basic TED Algorithm

• Step 1 – divide tree to subtrees
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The Basic TED Algorithm

• Step 1 – divide tree to subtrees
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The Basic TED Algorithm

• Step 2 – DP tables to compute distance for each subtree pair
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The Basic TED Algorithm

• 1st Table: DP table for subtree X1 and subtree Y1

25



The Basic TED Algorithm

• 2nd Table: DP table for subtree X1 and subtree Y0
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The Basic TED Algorithm

• 3rd Table: DP table for subtree X0 and subtree Y1
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The Basic TED Algorithm

• 4th Table: DP table for subtree X0 and subtree Y0
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The Basic TED Algorithm

• Step 3 – return TED result after all DP tables are computed
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Data Dependencies Example

• Hinder parallel processing
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Existing Parallel Solution

• Wave-front parallel computing
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• Wave-front parallel computing
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Existing Parallel Solution

• First, compute red units for all tables in parallel
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Existing Parallel Solution

• Then, compute orange units for all tables in parallel
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Existing Parallel Solution

• Next, compute blue units for all tables in parallel
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Existing Parallel Solution
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Existing Parallel Solution

• A huge memory space
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Existing Parallel Solution

• A huge memory space

• Frequent synchronizations
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Existing Parallel Solution

• A huge memory space

• Frequent synchronizations

• Load-imbalanced
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Insights from DP Patterns
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Insights from DP Patterns

• The computing of one DP table is viewed as a task
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Insights from DP Patterns

• The computing of one DP table is viewed as a task

• Data dependencies among tables are determined by tree structure
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Insights from DP Patterns
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Insights from DP Patterns

• subtree X0 contains X1
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Insights from DP Patterns

• subtree X0 contains X1 Table (X0,Y1) depends on Table (X1,Y1) 
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Insights from DP Patterns
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• subtree X0 contains X1, subtree Y0 contains Y1

Insights from DP Patterns
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Insights from DP Patterns
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Insights from DP Patterns
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• T1 and T2 then can be computed in parallel 



Our Solution: X-TED for Massively Parallel Computing
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Our Solution: X-TED for Massively Parallel Computing
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X-TED

• Memory saving
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X-TED

• Memory saving

- Each table is a task

- Each processor only stores 
one table
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X-TED

• Less synchronizations
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X-TED

• Less synchronizations

- Only sync. once at each batch
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X-TED

• Load-balanced
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X-TED

• Load-balanced

- Different strategies for tables
with different sizes

57



Experiment Setup

• Synthetic dataset: random recursive trees with 1000 to 9000 nodes

• For CPU baselines: Intel Core i9-12900 CPU, 8 Cores, 64GB

• For GPU baselines: NVIDIA RTX 3090, A100-SXM4, H100-PCIe 
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High-Performance Results of X-TED
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• 3 baselines: 
- Basic TED (1989)
- State-of-the-art sequential solution (AP-TED, 2016)
- State-of-the-art multi-core solution (MC-TED, 2020)
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High-Performance Results of X-TED

• Speedup over AP-TED
X-TED (CPU): 4.8x
X-TED (GPU): 42x
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High-Performance Results of X-TED

• Speedup over MC-TED
X-TED (CPU): 3.8x
X-TED (GPU): 31x
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• 3 baselines: 
- Basic TED (1989)
- State-of-the-art sequential solution (AP-TED, 2016)
- State-of-the-art multi-core solution (MC-TED, 2020)



High Scalability of X-TED
• Tree size: 1000 nodes à 9000 nodes
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Conclusion
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• X-TED
- A massive parallel computation framework for TED 
The best parallel TED solution so far
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Thank You!
Email: fan.1090@osu.edu

* Project Website and Open-Source Code: https://github.com/Davis-Fan/X-TED 



Image Reference

• Image in Page 13: Mohebbi, M., Razavi, S.N. & Balafar, M.A. Computing semantic similarity of texts 
based on deep graph learning with ability to use semantic role label information. Sci Rep 12, 14777 
(2022). https://doi.org/10.1038/s41598-022-19259-5

• Image in Page 14: Chartier M, Chénard T, Barker J, Najmanovich R. Kinome Render: a stand-alone and 
web-accessible tool to annotate the human protein kinome tree. PeerJ. 2013 Aug 8;1:e126. doi: 
10.7717/peerj.126. PMID: 23940838; PMCID: PMC3740139.

• Image in Page 15: Mate Kukri. 2022. Syntax searching C/C++ with Clang AST. Retrieved December 22, 
2022 from https://blog.trailofbits.com/2022/12/22/syntax-searching-c-c-clang-ast/.

• Image in Page 16: Xutao Li, Yunming Ye, Mark Junjie Li, Michael K. Ng, On cluster tree for nested and 
multi-density data clustering, Pattern Recognition, Volume 43, Issue 9, 2010, Pages 3130-3143, ISSN 
0031-3203, https://doi.org/10.1016/j.patcog.2010.03.020.

69


