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* The minimum cost of transforming one tree into another
by edit operations
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* |f the cost of each edit operationis 1, ...
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Tree Edit Distance (TED)

* |f the cost of each edit operationis 1, ...
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TED has a wide range of applications

* Natural language processing

- Al Generated Content

* Bioinformatics

- Protein structure and evolutionary

» Software Engineering

- Code similarity detection
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TED has a wide range of applications

* Natural language processing

- Al Generated Content W

* Bioinformatics

- Protein structure and evolutionary

« Software Engineering

- Code similarity detection /\
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* Machine Learning a5

- Classifications and clustering
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The Basic TED Algorithm

* The most widely-used TED algorithm (1989)
* Dynamic programming (DP)

* The worst-case complexity: O(n%)
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« Step 1 — divide tree to subtrees
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« Step 1 — divide tree to subtrees
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The Basic TED Algorithm

« Step 2 — DP tables to compute distance for each subtree pair
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The Basic TED Algorithm

 1st Table: DP table for subtree X, and subtree Y,
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The Basic TED Algorithm

« 2nd Table: DP table for subtree X, and subtree Y|,
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The Basic TED Algorithm

« Step 3 — return TED result after all DP tables are computed
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Data Dependencies Example
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« Wave-front parallel computing
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Existing Parallel Solution

* First, compute red units for all tables in parallel
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Existing Parallel Solution

* Then, compute orange units for all tables in parallel
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Existing Parallel Solution

* Next, compute blue units for all tables in parallel
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Insights from DP Patterns

* The computing of one DP table is viewed as a task

» Data dependencies among tables are determined by tree structure
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Insights from DP Patterns
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Insights from DP Patterns
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* Memory saving
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X-TED

* Memory saving

- Each table is a task

- Each processor only stores
one table
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* Less synchronizations
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X-TED

* Less synchronizations

- Only sync. once at each batch
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X-TED
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Experiment Setup

Dataset Max. Depth Avg. Depth Avg.Nodes Max. Nodes

Swissport 9 7.01 988.36 7241
Python 156 13.11 927.41 8516
DBLP 7 3.16 26.05 1186
Bolzano 4 3.82 178.71 2105

« Synthetic dataset: random recursive trees with 1000 to 9000 nodes
* For CPU baselines: Intel Core i19-12900 CPU, 8 Cores, 64GB

* For GPU baselines: NVIDIA RTX 3090, A100-SXM4, H100-PCle
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High-Performance Results of X-TED

3 baselines:

- Basic TED (1989)
- State-of-the-art sequential solution (AP-TED, 2016)
- State-of-the-art multi-core solution (MC-TED, 2020)
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X-TED (CPU): 4.8x
X-TED (GPU): 42x
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High-Performance Results of X-TED

3 baselines:

- Basic TED (1989)
- State-of-the-art sequential solution (AP-TED, 2016)
- State-of-the-art multi-core solution (MC-TED, 2020)
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X-TED (CPU): 3.8x
X-TED (GPU): 31x
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 Tree size:

High Scalability of X-TEL
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Conclusion

« X-TED
- A massive parallel computation framework for TED
The best parallel TED solution so far

* Preprocessing enables massive TED parallel processing

« Dynamic parallel strategy adaptively utilizes GPU resources

Thank You!

Email: fan.1090@osu.edu

* Project Website and Open-Source Code: https://github.com/Davis-Fan/X-TED
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