X-TED: Massive Parallelization of Tree Edit Distance

Dayi Fan[†], Rubao Lee*, Xiaodong Zhang[†]

† The Ohio State University* Freelance

What is Tree Edit Distance (TED)?

What is Tree Edit Distance (TED)?

What is Tree Edit Distance (TED)?

 The minimum cost of transforming one tree into another by edit operations

• If the cost of each edit operation is 1, ...

• If the cost of each edit operation is 1, ...

$$TED(X,Y) = 3$$

- Natural language processing
 - Al Generated Content

- Natural language processing
 - AI Generated Content
- Bioinformatics
 - Protein structure and evolutionary

- Natural language processing
 - Al Generated Content
- Bioinformatics
 - Protein structure and evolutionary
- Software Engineering
 - Code similarity detection

- Natural language processing
 - Al Generated Content
- Bioinformatics
 - Protein structure and evolutionary
- Software Engineering
 - Code similarity detection
- Machine Learning
 - Classifications and clustering

• The first TED algorithm (1979) with complexity O(n⁶)

• The most widely-used TED algorithm (1989)

• The most widely-used TED algorithm (1989)

Dynamic programming (DP)

• The most widely-used TED algorithm (1989)

Dynamic programming (DP)

• The worst-case complexity: O(n⁴)

• Step 1 – divide tree to subtrees

• Step 1 – divide tree to subtrees

Step 1 – divide tree to subtrees

Step 2 – DP tables to compute distance for each subtree pair

• 1st Table: DP table for subtree X₁ and subtree Y₁

• 2nd Table: DP table for subtree X₁ and subtree Y₀

• 3rd Table: DP table for subtree X₀ and subtree Y₁

• 4th Table: DP table for subtree X₀ and subtree Y₀

• Step 3 – return TED result after all DP tables are computed

Data Dependencies Example

Hinder parallel processing

Wave-front parallel computing

Wave-front parallel computing

• First, compute red units for all tables in parallel

• Then, compute orange units for all tables in parallel

• Next, compute blue units for all tables in parallel

Existing Parallel Solution

A huge memory space

Existing Parallel Solution

- A huge memory space
- Frequent synchronizations

Existing Parallel Solution

- A huge memory space
- Frequent synchronizations
- Load-imbalanced

The computing of one DP table is viewed as a task

The computing of one DP table is viewed as a task

• Data dependencies among tables are determined by tree structure

• subtree X₀ contains X₁

• subtree X_0 contains $X_1 \longrightarrow$ Table (X_0, Y_1) depends on Table (X_1, Y_1)

• subtree X₀ contains X₁, subtree Y₀ contains Y₁

• subtree X₀ contains X₁, subtree Y₀ contains Y₁

• T₁ and T₂ then can be computed in parallel

Our Solution: X-TED for Massively Parallel Computing

Our Solution: X-TED for Massively Parallel Computing

Memory saving

- Memory saving
 - Each table is a task

 Each processor only stores one table

Less synchronizations

- Less synchronizations
 - Only sync. once at each batch

Load-balanced

Load-balanced

- Different strategies for tables with different sizes

Experiment Setup

Dataset	Max. Depth	Avg. Depth	Avg. Nodes	Max. Nodes
Swissport	9	7.01	988.36	7241
Python	156	13.11	927.41	8516
DBLP	7	3.16	26.05	1186
Bolzano	4	3.82	178.71	2105

- Synthetic dataset: random recursive trees with 1000 to 9000 nodes
- For CPU baselines: Intel Core i9-12900 CPU, 8 Cores, 64GB
- For GPU baselines: NVIDIA RTX 3090, A100-SXM4, H100-PCIe

- 3 baselines:
 - Basic TED (1989)
 - State-of-the-art sequential solution (AP-TED, 2016)
 - State-of-the-art multi-core solution (MC-TED, 2020)

- 3 baselines:
 - Basic TED (1989)
 - State-of-the-art sequential solution (AP-TED, 2016)
 - State-of-the-art multi-core solution (MC-TED, 2020)

- 3 baselines:
 - Basic TED (1989)
 - State-of-the-art sequential solution (AP-TED, 2016)
 - State-of-the-art multi-core solution (MC-TED, 2020)

Speedup over AP-TED

X-TED (CPU): 4.8x

X-TED (GPU): **42x**

- 3 baselines:
 - Basic TED (1989)
 - State-of-the-art sequential solution (AP-TED, 2016)
 - State-of-the-art multi-core solution (MC-TED, 2020)

Speedup over MC-TED

X-TED (CPU): 3.8x

X-TED (GPU): 31x

High Scalability of X-TED

• Tree size: 1000 nodes → 9000 nodes

- X-TED
 - A massive parallel computation framework for TED The **best** parallel TED solution so far

- X-TED
 - A massive parallel computation framework for TED The *best* parallel TED solution so far
- Preprocessing enables massive TED parallel processing

- X-TED
 - A massive parallel computation framework for TED The **best** parallel TED solution so far
- Preprocessing enables massive TED parallel processing
- Dynamic parallel strategy adaptively utilizes GPU resources

- X-TED
 - A massive parallel computation framework for TED The *best* parallel TED solution so far
- Preprocessing enables massive TED parallel processing
- Dynamic parallel strategy adaptively utilizes GPU resources

Thank You! Email: fan.1090@osu.edu

^{*} Project Website and Open-Source Code: https://github.com/Davis-Fan/X-TED

Image Reference

- Image in Page 13: Mohebbi, M., Razavi, S.N. & Balafar, M.A. Computing semantic similarity of texts based on deep graph learning with ability to use semantic role label information. Sci Rep 12, 14777 (2022). https://doi.org/10.1038/s41598-022-19259-5
- Image in Page 14: Chartier M, Chénard T, Barker J, Najmanovich R. Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome tree. PeerJ. 2013 Aug 8;1:e126. doi: 10.7717/peerj.126. PMID: 23940838; PMCID: PMC3740139.
- Image in Page 15: Mate Kukri. 2022. Syntax searching C/C++ with Clang AST. Retrieved December 22, 2022 from https://blog.trailofbits.com/2022/12/22/syntax-searching-c-c-clang-ast/.
- Image in Page 16: Xutao Li, Yunming Ye, Mark Junjie Li, Michael K. Ng, On cluster tree for nested and multi-density data clustering, Pattern Recognition, Volume 43, Issue 9, 2010, Pages 3130-3143, ISSN 0031-3203, https://doi.org/10.1016/j.patcog.2010.03.020.